
Loads Documentation
Release 0.1

Mozilla Services

September 27, 2013

CONTENTS

i

ii

Loads Documentation, Release 0.1

Loads is a tool to load test your HTTP services.

With Loads, your load tests are classical Python unit tests which are calling the service(s) you want to send load to.

It also comes with a command line to run the actual load.

Loads tries its best to avoid reinventing the wheel, so we offer integration with 3 existing libraries: Requests, WebTest
and ws4py.

Here’s a really simple test example:

from loads.case import TestCase

class TestWebSite(TestCase):

def test_es(self):
self.session.get(’http://localhost:9200’)

If you don’t want to write your load tests in python, or if you want to use any other library to describe the testing,
Loads allows you to use your own formalism. see :doc:zmq-api.

With such a test, running loads simply consists of doing:

$ bin/loads-runner example.TestWebSite.test_es
[==] 100%

Hits: 1
Started: 2013-06-14 12:15:42.860586
Duration: 0.03 seconds
Approximate Average RPS: 39
Average request time: 0.01s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 1
Errors: 0
Failures: 0

See User Guide for more options and information.

CONTENTS 1

Loads Documentation, Release 0.1

2 CONTENTS

CHAPTER

ONE

MORE DOCUMENTATION

1.1 Installation

1.1.1 Prerequisites

Loads is developed and tested with Python 2.7.

Loads uses ZeroMQ and Gevent, so you need to have libzmq and libev on your system. You also need the Python
headers.

Under Debuntu:

$ sudo apt-get install libev-dev libzmq-dev python-dev

And under Mac OS X, using Brew:

$ brew install libev
$ brew install zeromq
$ brew install python

Make sure you have a C compiler, and then pip:

$ curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py
$ sudo python get-pip.py

This will install pip globally on your system.

The next step is to install Virtualenv:

$ sudo pip install virtualenv

This will also install it globally on your system.

1.1.2 Basic installation

Now we can build Loads locally:

$ make build

This will compile Gevent 1.0rc2 using Cython, and all the dependencies required by Loads - into a local virtualenv.

That’s it. You should then find load-runner in your bin directory.

3

Loads Documentation, Release 0.1

1.1.3 Distributed

To install what’s required to run distributed tests, you need to run:

$ make build_extras

1.2 User Guide

1.2.1 Using Loads with Requests

Let’s say you want to load test the Elastic Search root page on your system, just to be sure.

Write a unittest like this one and save it in an example.py file:

from loads.case import TestCase

class TestWebSite(TestCase):

def test_es(self):
self.session.get(’http://localhost:9200’)

The TestCase class provided by Load has a session attribute you can use to interact with an HTTP server. It’s a Session
instance from Requests.

Now run loads-runner against it:

$ bin/loads-runner example.TestWebSite.test_es
[==] 100%

Hits: 1
Started: 2013-06-14 12:15:42.860586
Duration: 0.03 seconds
Approximate Average RPS: 39
Average request time: 0.01s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 1
Errors: 0
Failures: 0

This will execute your test just once - so you can control it works well.

Now, try to run it using 100 virtual users (-u), each of them running the test 10 times (-c):

$ bin/loads-runner example.TestWebSite.test_es -u 100 -c 10
[==] 100%
Hits: 1000
Started: 2013-06-14 12:15:06.375365
Duration: 2.02 seconds
Approximate Average RPS: 496
Average request time: 0.04s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 1000
Errors: 0
Failures: 0

4 Chapter 1. More documentation

Loads Documentation, Release 0.1

Congrats, you’ve just sent a load of 1000 hits, using 100 concurrent threads.

Now let’s run a series of 10, 20 then 30 users, each one running 20 hits:

$ bin/loads-runner loads.examples.test_blog.TestWebSite.test_something --hits 20 -u 10:20:30

That’s 1200 hits total.

1.2.2 Using Loads with ws4py

Loads provides web sockets API through the ws4py library. You can initialize a new socket connection using the
create_ws method.

Run the echo_server.py file located in the examples directory, then write a test that uses a web socket against it:

from loads.case import TestCase

class TestWebSite(TestCase):

def test_something(self):
def callback(m):

results.append(m.data)

ws = self.create_ws(’ws://localhost:9000/ws’,
callback=callback)

ws.send(’something’)
ws.receive()
ws.send(’happened’)
ws.receive()

while len(results) < 2:
time.sleep(.1)

self.assertEqual(results, [’something’, ’happened’])

1.2.3 Using Loads with WebTest

If you are a WebTest fan, you can use it instead of Requests. If you don’t know what webtest is, you should have a
look at it ;).

You just need to use app instead of session in the test class, that’s a webtest.TestApp object, providing all the APIs to
interact with a web application:

from loads.case import TestCase

class TestWebSite(TestCase):

def test_something(self):
self.assertTrue(’Search’ in self.app.get(’/’))

Of course, because the server root URL will change during the tests, you can define it outside the tests, on the command
line, with –server-url when you run your load test:

$ bin/loads-runner example.TestWebSite.test_something --server_url http://localhost:9200

1.2. User Guide 5

http://webtest.pythonpaste.org/en/latest/
http://webtest.pythonpaste.org/en/latest/

Loads Documentation, Release 0.1

Changing the server URL

It may happen that you need to change the server url when you’re running the tests. To do so, change the server_url
attribute of the app object:

self.app.server_url = ’http://new-server’

1.2.4 Distributed test

If you want to send a lot of load, you need to run a distributed test. A distributed test uses multiple agents to do the
requests. The agents can be on the same machine, or on a different physical hardware.

The Loads command line is able to interact with several agents through a broker.

To run a broker and some agents, let’s use Circus.

Install Circus:

$ bin/pip install circus

And run it against the provided loads.ini configuration file that’s located in the Loads source repository in conf:

$ bin/circusd --daemon conf/loads.ini

Here is the content of the loads.ini file:

[circus]
check_delay = 5
httpd = 0
statsd = 1
debug = 0

[watcher:broker]
cmd = bin/loads-broker
warmup_delay = 0
numprocesses = 1

[watcher:agents]
cmd = bin/loads-agent
warmup_delay = 0
numprocesses = 5
copy_env = 1

What happened? You have just started a Loads broker with 5 agents.

Let’s use them now, with the agents option:

$ bin/load-runner example.TestWebSite.test_something -u 10:20:30 -c 20 --agents 5
[==] 100%

Congrats, you have just sent 6000 hits from 5 different agents. Easy, no?

Detach mode

When you are running a long test in distributed mode, you might want to detach the console and come back later to
check the status of the load test.

To do this, you can simply hit Ctrl+C. Loads will ask you if you want to detach the console and continue the test, or
simply stop it:

6 Chapter 1. More documentation

Loads Documentation, Release 0.1

$ bin/load-runner example.TestWebSite.test_something -u 10:20:30 -c 20 --agents 5
^C
...
Duration: 2.04 seconds
Hits: 964
Started: 2013-07-22 07:12:30.139814
Approximate Average RPS: 473
Average request time: 0.00s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 964
Errors: 0
Failures: 0

Do you want to (s)top the test or (d)etach ? d

Then you can use –attach to reattach the console:

$ bin/loads-runner --attach
[] 4%
Duration: 43.68 seconds
Hits: 19233
Started: 2013-07-22 07:12:30.144859
Approximate Average RPS: 0
Average request time: 0.00s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 0
Errors: 0
Failures: 0

Do you want to (s)top the test or (d)etach ? s

1.2.5 Outputs

By default, loads reports the status of the load in real time onthe standard output of the client machine. Depending
what you are trying to achieve, that may or may not be what you want.

Loads comes with a pluggable “output” mechanism: it’s possible to define your own output format if you need so.

You can change this behaviour with the –output option of the loads-runner command line.

1.3 Under the hood — How loads is designed

Hopefully, it’s not really complicated to dig into the code and have a good overview of how loads is designed, but
sometimes a good document explaining how things are done is a good starting point, so let’s try!

You can run loads either in distributed mode or in non-distributed mode. The vast majority of the time, you want to
spawn a number of agents and let them hammer the site you want to test. That’s what we call the distributed mode.
Alternatively, you may want to run things in a single process, for instance while writing your functional tests, that’s
the non-distributed mode.

1.3. Under the hood — How loads is designed 7

Loads Documentation, Release 0.1

1.3.1 What happens during a non-distributed run

1. You invoke the loads.runner.Runner class.

2. A loads.case.TestResult object is created. This object is a data collector, it is passed to the test suite (TestCase),
the loads Session object and the websocket manager. Its very purpose is to collect the data from these sources.
You can read more in the section named TestResult below.

3. We create any number of outputs (standard output, html output, etc.) in the runner and register them to the
test_result object.

4. The loads.case.TestCase derivated-class is built and we pass it the test_result object.

5. A number of threads / gevent greenlets are spawned and the tests are run one or multiple times.

6. During the tests, both the requests’ Session, the test case itself and the websocket objects report their progress
in real time to test_result. When there is a need to disambiguate the calls, a loads_status object is passed along.

It contains data about the hits, the total number of users, the current user and the current hit.

7. Each time a call is made to the test_result object to add data, it notifies its list of observers to be sure they are up
to date. This is helpful to create reports in real time, as we get data, and to provide a stream of info to the end
users.

1.3.2 What happens during a distributed run

When you run in distributed mode, you have a distributed runner (master) which, rather than running the tests locally,
asks an Agent to run them. It is possible to run a number of agents at the same time.

These agents are just simple runners, but instead of reporting everything locally, using a TestResult object, they relay
all the data to the master instance using a 0MQ stream.

It means that the code in loads/relay.py is a drop-in replacement for a TestResult object.

Once the results are back to the master, it populates its local test_runner, which will in turn call the outputs to generate
the reports.

A schema might help you to get things right:

8 Chapter 1. More documentation

Loads Documentation, Release 0.1

All the inter-process communications (IPC) are handled by ZeroMQ, as you can see on the schema. Here is the
caption:

1. The distributed loads runner (the master) sends a message to the broker, asking it to run the tests on N agents.

2. The broker selects the spare agents and send them the job. The agents start a loads-runner instance in slave mode
(the slave), proxying all the calls to the test_result objects to the zmq push socket.

3. The master receives the calls and pass them to its local test_results instance.

1.3. Under the hood — How loads is designed 9

Loads Documentation, Release 0.1

1.3.3 The TestResult object

The TestResult object follows the APIs of unittest. That’s why you can see methods such as addSuccess, addFailure,
etc.

It is done this way so that you actually can just replace the normal unittest object by the one coming from loads, and
gather data this way.

If you have a look at what you can find in loads/case.py, you will find that we create a TestResultProxy object. This is
done so that the test_result object we pass to the TestCase have the exact same APIs than the one in unittest (it used to
contain extra arguments).

1.4 Using loads in a different language

Loads is built in a way that makes it possible to have runners written in different languages. It’s perfectly possible to
have a runner in javascript or ruby, sending data to loads.

This is made possible by the use of zeromq to send inter-process (or even inter-machines!) messages.

This means you can write your load tests with whatever language you want, as long as the test-runner sends back its
results in the zmq pipeline, respecting the format described in this document.

1.4.1 Implementations in other languages

• Integration of loads with javascript, named loads.js

1.4.2 Loads messaging format

The messages sent to loads always contain a data_type key, which describes the type of that that’s being sent.

The messages respect the following rules:

• All the data is JSON encoded.

• Dates are expressed in ISO 8601 format, (YYYY-MM-DDTHH:MM:SS)

• You should send along the worker id with every message. Each worker id should be different from each other.

A message generally looks like this:

{
data_type: ’something’,
worker_id: ’1’,
other_key_1: ’foo’
other_key_2: ’bar’

}

loads_status

Some messages take a loads_status argument. loads_status is a list of values concerning the current status of the load.
It contains, in this order:

• cycles: the number of cycles that will be running in total

• user: the number of users per cycle)

10 Chapter 1. More documentation

http://zeromq.org/
https://github.com/mozilla-services/loads.js
https://en.wikipedia.org/wiki/ISO_8601

Loads Documentation, Release 0.1

• current_cycle: the cycle we are currently in

• current_user: the current user that’s doing the requests

errors / exceptions

When errors / exceptions are caught, they are serialised and sent trough the wire, as well. When you see an exc *, it is
a list containing this:

• A string representation of the exception

• A string representation of the exception class

• The traceback / Stack trace.

1.4.3 Data types

Before and after you run the tests, you need to tell that you’re doing so:

• startTestRun()

• stopTestRun()

Tests

When using loads, you usually run a test suite. Tests start, stop, succeed and fail. Here are the APIs you can use:

• addFailure(test_name, exc *, loads_status)

• addError(test_name, exc *, loads_status)

• addSuccess(test_name, loads_status)

• startTest(test_name, loads_status)

• stopTest(test_name, loads_status)

Requests

To track requests, you only have one method, named “add_hit” with the following parameters:

• url, the URL of the request, for instance http://notmyidea.org

• method, the HTTP method (GET, POST, PUT, etc.)

• status, the response of the call (200)

• started, the time when it started

• elapsed, the number of seconds (decimal) the request took to run

• loads_status, as already described

1.4. Using loads in a different language 11

http://notmyidea.org

Loads Documentation, Release 0.1

Sockets

If you’re also able to track what’s going on with the socket connections, then you can use the following messages:

• socket_open()

• socket_close()

• socket_message(size) # the size, in bytes, that were transmitted via the websocket.

12 Chapter 1. More documentation

