

 Navigation

 	
 index

 	
 next |

 	Loads 0.1 documentation

Loads — Load testing for dummies

Loads is a tool to load test your HTTP services.

With Loads, your load tests are classical
Python unit tests which are calling the service(s) you want to send load to.

It also comes with a command line to run the actual load.

Loads tries its best to avoid reinventing the wheel, so we offer integration
with 3 existing libraries: Requests, WebTest and ws4py.

Here’s a really simple test example:

from loads.case import TestCase

class TestWebSite(TestCase):

 def test_es(self):
 self.session.get('http://localhost:9200')

If you don’t want to write your load tests in python, or if you want to use any
other library to describe the testing, Loads allows you to use your
own formalism. see :doc:zmq-api.

With such a test, running loads simply consists of doing:

$ bin/loads-runner example.TestWebSite.test_es
[==] 100%

Hits: 1
Started: 2013-06-14 12:15:42.860586
Duration: 0.03 seconds
Approximate Average RPS: 39
Average request time: 0.01s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 1
Errors: 0
Failures: 0

See User Guide for more options and information.

More documentation

	Installation
	Prerequisites

	Basic installation

	Distributed

	User Guide
	Using Loads with Requests

	Using Loads with ws4py

	Using Loads with WebTest

	Distributed test

	Outputs

	Under the hood — How loads is designed
	What happens during a non-distributed run

	What happens during a distributed run

	The TestResult object

	Using loads in a different language
	Implementations in other languages

	Loads messaging format

	Data types

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Loads 0.1 documentation

Installation

Prerequisites

Loads is developed and tested with Python 2.7.

Loads uses ZeroMQ and Gevent, so you need to have libzmq and libev on
your system. You also need the Python headers.

Under Debuntu:

$ sudo apt-get install libev-dev libzmq-dev python-dev

And under Mac OS X, using Brew:

$ brew install libev
$ brew install zeromq
$ brew install python

Make sure you have a C compiler, and then pip:

$ curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py
$ sudo python get-pip.py

This will install pip globally on your system.

The next step is to install Virtualenv:

$ sudo pip install virtualenv

This will also install it globally on your system.

Basic installation

Now we can build Loads locally:

$ make build

This will compile Gevent 1.0rc2 using Cython, and all the dependencies
required by Loads - into a local virtualenv.

That’s it. You should then find load-runner in your bin directory.

Distributed

To install what’s required to run distributed tests, you need to
run:

$ make build_extras

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Loads 0.1 documentation

User Guide

Using Loads with Requests

Let’s say you want to load test the Elastic Search root page on your
system, just to be sure.

Write a unittest like this one and save it in an example.py file:

from loads.case import TestCase

class TestWebSite(TestCase):

 def test_es(self):
 self.session.get('http://localhost:9200')

The TestCase class provided by Load has a session attribute you
can use to interact with an HTTP server. It’s a Session instance
from Requests.

Now run loads-runner against it:

$ bin/loads-runner example.TestWebSite.test_es
[==] 100%

Hits: 1
Started: 2013-06-14 12:15:42.860586
Duration: 0.03 seconds
Approximate Average RPS: 39
Average request time: 0.01s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 1
Errors: 0
Failures: 0

This will execute your test just once - so you can control it works well.

Now, try to run it using 100 virtual users (-u), each of them running the test
10 times (-c):

$ bin/loads-runner example.TestWebSite.test_es -u 100 -c 10
[==] 100%
Hits: 1000
Started: 2013-06-14 12:15:06.375365
Duration: 2.02 seconds
Approximate Average RPS: 496
Average request time: 0.04s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 1000
Errors: 0
Failures: 0

Congrats, you’ve just sent a load of 1000 hits, using 100 concurrent threads.

Now let’s run a series of 10, 20 then 30 users, each one running 20 hits:

$ bin/loads-runner loads.examples.test_blog.TestWebSite.test_something --hits 20 -u 10:20:30

That’s 1200 hits total.

Using Loads with ws4py

Loads provides web sockets API through the ws4py library. You can
initialize a new socket connection using the create_ws method.

Run the echo_server.py file located in the examples directory, then
write a test that uses a web socket against it:

from loads.case import TestCase

class TestWebSite(TestCase):

 def test_something(self):
 def callback(m):
 results.append(m.data)

 ws = self.create_ws('ws://localhost:9000/ws',
 callback=callback)
 ws.send('something')
 ws.receive()
 ws.send('happened')
 ws.receive()

 while len(results) < 2:
 time.sleep(.1)

 self.assertEqual(results, ['something', 'happened'])

Using Loads with WebTest

If you are a WebTest fan, you can use it instead of Requests. If you don’t
know what webtest is, you should have a look at it [http://webtest.pythonpaste.org/en/latest/] ;).

You just need to use app instead of session in the test class, that’s
a webtest.TestApp object, providing all the APIs to interact with a web
application:

from loads.case import TestCase

class TestWebSite(TestCase):

 def test_something(self):
 self.assertTrue('Search' in self.app.get('/'))

Of course, because the server root URL will change during the tests, you can
define it outside the tests, on the command line, with –server-url
when you run your load test:

$ bin/loads-runner example.TestWebSite.test_something --server_url http://localhost:9200

Changing the server URL

It may happen that you need to change the server url when you’re running the
tests. To do so, change the server_url attribute of the app object:

self.app.server_url = 'http://new-server'

Distributed test

If you want to send a lot of load, you need to run a distributed test.
A distributed test uses multiple agents to do the requests. The agents can be
on the same machine, or on a different physical hardware.

The Loads command line is able to interact with several agents
through a broker.

To run a broker and some agents, let’s use Circus.

Install Circus:

$ bin/pip install circus

And run it against the provided loads.ini configuration file that’s
located in the Loads source repository in conf:

$ bin/circusd --daemon conf/loads.ini

Here is the content of the loads.ini file:

[circus]
check_delay = 5
httpd = 0
statsd = 1
debug = 0

[watcher:broker]
cmd = bin/loads-broker
warmup_delay = 0
numprocesses = 1

[watcher:agents]
cmd = bin/loads-agent
warmup_delay = 0
numprocesses = 5
copy_env = 1

What happened? You have just started a Loads broker with 5 agents.

Let’s use them now, with the agents option:

$ bin/load-runner example.TestWebSite.test_something -u 10:20:30 -c 20 --agents 5
[==] 100%

Congrats, you have just sent 6000 hits from 5 different agents. Easy, no?

Detach mode

When you are running a long test in distributed mode, you might want to detach
the console and come back later to check the status of the load test.

To do this, you can simply hit Ctrl+C. Loads will ask you if
you want to detach the console and continue the test, or simply stop it:

$ bin/load-runner example.TestWebSite.test_something -u 10:20:30 -c 20 --agents 5
^C
...
Duration: 2.04 seconds
Hits: 964
Started: 2013-07-22 07:12:30.139814
Approximate Average RPS: 473
Average request time: 0.00s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 964
Errors: 0
Failures: 0

Do you want to (s)top the test or (d)etach ? d

Then you can use –attach to reattach the console:

$ bin/loads-runner --attach
[] 4%
Duration: 43.68 seconds
Hits: 19233
Started: 2013-07-22 07:12:30.144859
Approximate Average RPS: 0
Average request time: 0.00s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 0
Errors: 0
Failures: 0

Do you want to (s)top the test or (d)etach ? s

Outputs

By default, loads reports the status of the load in real time onthe standard
output of the client machine. Depending what you are trying to achieve, that
may or may not be what you want.

Loads comes with a pluggable “output” mechanism: it’s possible to
define your own output format if you need so.

You can change this behaviour with the –output option of the loads-runner
command line.

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Loads 0.1 documentation

Under the hood — How loads is designed

Hopefully, it’s not really complicated to dig into the code and have a good
overview of how loads is designed, but sometimes a good document explaining
how things are done is a good starting point, so let’s try!

You can run loads either in distributed mode or in non-distributed mode.
The vast majority of the time, you want to spawn a number of agents and let
them hammer the site you want to test. That’s what we call the distributed
mode. Alternatively, you may want to run things in a single process, for
instance while writing your functional tests, that’s the non-distributed
mode.

What happens during a non-distributed run

	You invoke the loads.runner.Runner class.

	A loads.case.TestResult object is created. This object is a data
collector, it is passed to the test suite (TestCase), the loads Session
object and the websocket manager. Its very purpose is to collect the data
from these sources. You can read more in the section named TestResult below.

	We create any number of outputs (standard output, html output, etc.) in the
runner and register them to the test_result object.

	The loads.case.TestCase derivated-class is built and we pass it the
test_result object.

	A number of threads / gevent greenlets are spawned and the tests are run one
or multiple times.

	During the tests, both the requests’ Session, the test case itself and the
websocket objects report their progress in real time to test_result. When
there is a need to disambiguate the calls, a loads_status object is passed
along.

It contains data about the hits, the total number of users, the current
user and the current hit.

	Each time a call is made to the test_result object to add data, it notifies
its list of observers to be sure they are up to date. This is helpful to
create reports in real time, as we get data, and to provide a stream of info
to the end users.

What happens during a distributed run

When you run in distributed mode, you have a distributed runner (master) which,
rather than running the tests locally, asks an Agent to run them. It is
possible to run a number of agents at the same time.

These agents are just simple runners, but instead of reporting everything
locally, using a TestResult object, they relay all the data to the master
instance using a 0MQ stream.

It means that the code in loads/relay.py is a drop-in replacement for
a TestResult object.

Once the results are back to the master, it populates its local test_runner,
which will in turn call the outputs to generate the reports.

A schema might help you to get things right:

[image: _images/loads.png]
All the inter-process communications (IPC) are handled by ZeroMQ, as you can
see on the schema. Here is the caption:

	The distributed loads runner (the master) sends a message to the broker,
asking it to run the tests on N agents.

	The broker selects the spare agents and send them the job.
The agents start a loads-runner instance in slave mode (the slave),
proxying all the calls to the test_result objects to the zmq push socket.

	The master receives the calls and pass them to its local test_results
instance.

The TestResult object

The TestResult object follows the APIs of unittest. That’s why you can see
methods such as addSuccess, addFailure, etc.

It is done this way so that you actually can just replace the normal unittest
object by the one coming from loads, and gather data this way.

If you have a look at what you can find in loads/case.py, you will find that
we create a TestResultProxy object. This is done so that the test_result
object we pass to the TestCase have the exact same APIs than the one in
unittest (it used to contain extra arguments).

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 previous |

 	Loads 0.1 documentation

Using loads in a different language

Loads is built in a way that makes it possible to have runners written in
different languages. It’s perfectly possible to have a runner in javascript or
ruby, sending data to loads.

This is made possible by the use of zeromq [http://zeromq.org/] to send
inter-process (or even inter-machines!) messages.

This means you can write your load tests with whatever language you want, as
long as the test-runner sends back its results in the zmq pipeline, respecting
the format described in this document.

Implementations in other languages

	Integration of loads with javascript, named loads.js [https://github.com/mozilla-services/loads.js]

Loads messaging format

The messages sent to loads always contain a data_type key, which
describes the type of that that’s being sent.

The messages respect the following rules:

	All the data is JSON encoded.

	Dates are expressed in ISO 8601 format [https://en.wikipedia.org/wiki/ISO_8601], (YYYY-MM-DDTHH:MM:SS)

	You should send along the worker id with every message. Each worker id should
be different from each other.

A message generally looks like this:

{
 data_type: 'something',
 worker_id: '1',
 other_key_1: 'foo'
 other_key_2: 'bar'
}

loads_status

Some messages take a loads_status argument. loads_status is a list of
values concerning the current status of the load. It contains, in this order:

	cycles: the number of cycles that will be running in total

	user: the number of users per cycle)

	current_cycle: the cycle we are currently in

	current_user: the current user that’s doing the requests

errors / exceptions

When errors / exceptions are caught, they are serialised and sent trough the
wire, as well. When you see an exc *, it is a list containing this:

	A string representation of the exception

	A string representation of the exception class

	The traceback / Stack trace.

Data types

Before and after you run the tests, you need to tell that you’re doing so:

	startTestRun()

	stopTestRun()

Tests

When using loads, you usually run a test suite. Tests start, stop, succeed and
fail. Here are the APIs you can use:

	addFailure(test_name, exc *, loads_status)

	addError(test_name, exc *, loads_status)

	addSuccess(test_name, loads_status)

	startTest(test_name, loads_status)

	stopTest(test_name, loads_status)

Requests

To track requests, you only have one method, named “add_hit” with the following parameters:

	url, the URL of the request, for instance http://notmyidea.org

	method, the HTTP method (GET, POST, PUT, etc.)

	status, the response of the call (200)

	started, the time when it started

	elapsed, the number of seconds (decimal) the request took to run

	loads_status, as already described

Sockets

If you’re also able to track what’s going on with the socket connections, then
you can use the following messages:

	socket_open()

	socket_close()

	socket_message(size) # the size, in bytes, that were transmitted via the websocket.

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	Loads 0.1 documentation

Index

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_images/loads.png
Distributed
Runner

subscriber

publisher

router WU punl

class MyTest(TestCase):
def test_one(self):
self.get('http://site’)

Agents

_static/file.png

search.html

 Navigation

 		
 index

 		Loads 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		0.2

 		0.1

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

