

 Navigation

 	
 index

 	
 next |

 	Loads 0.2 documentation

Loads — Conterit Omnia Tua Application

[image: _images/logo.jpg]
 [http://thenounproject.com/noun/riot/#icon-No15381]by Juan Pablo Bravo

Loads is a tool to load test your HTTP services, including
web sockets.

[image: Build Status]
 [https://secure.travis-ci.org/mozilla-services/loads/][image: https://coveralls.io/repos/mozilla-services/loads/badge.png?branch=master]
 [https://coveralls.io/r/mozilla-services/loads][image: https://pypip.in/v/loads/badge.png]
 [https://crate.io/packages/loads/]With Loads, your load tests are classical
Python functional tests which are calling the service(s) you want to
exercise.

Loads is not asking you to use an ad-hoc API. The tool offers an
integration with 3 existing libraries: Requests [http://docs.python-requests.org],
WebTest [http://webtest.readthedocs.org] and
ws4py [https://ws4py.readthedocs.org].
You just need to write your tests using them, and Loads
will do the rest.

Loads can run tests from a single box or distributed across
many nodes, from the same command line tool. All tests results
are coming back to you in real time while the load is
progressing.

Since you are using Python to build your tests, you can
write very complex scenarii, and use Loads options to
run them using as many concurrent users as your hardware
(or cloud service) allows you.

Here’s a really simple example where we check that a
local Elastic Search server is answering to HTTP calls:

from loads.case import TestCase

class TestWebSite(TestCase):

 def test_es(self):
 res = self.session.get('http://localhost:9200')
 self.assertEqual(res.status_code, 200)

The test is also checking that the page is sending back a 200.
In case it’s not behaving properly, Loads will let you know.

Note

If you don’t want to write your load tests using Python, or if
you want to use any other library to write tests,
Loads can be extended. See Plugin-in external runners.

With such a test, running Loads is done by pointing the
test_es method:

$ bin/loads-runner example.TestWebSite.test_es
[===] 100%

Hits: 1
Started: 2013-06-14 12:15:42.860586
Duration: 0.03 seconds
Approximate Average RPS: 39
Average request time: 0.01s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 1
Errors: 0
Failures: 0

See Writing load tests for a complete walkthrough. Loads commands
provides a detailed documentation on all the options you can
use.

If want to contribute to the project see Contributing.

More documentation

	Installation
	Prerequisites

	Basic installation

	Distributed

	Writing load tests
	Using Requests

	Using Loads with ws4py

	Using Loads with WebTest

	Adding custom metrics

	Loads commands
	loads-runner

	loads-broker

	loads-agent

	Distributed test
	Setting up a Loads cluster

	Adding more agents

	Detach mode

	Writing asynchronous tests
	Asynchronous web sockets

	Design
	What happens during a non-distributed run

	What happens during a distributed run

	The TestResult object

	The Runners

	Plugin-in external runners
	Existing implementations

	The protocol

	Data types

	Glossary

	Contributing

	Outputs

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Loads 0.2 documentation

Installation

Prerequisites

Loads is developed and tested with Python 2.7.x and
Python 2.6.x. We encourage you to use the latest 2.7 version.

Loads uses ZeroMQ and Gevent, so you need to have libzmq and libev on
your system. You also need the Python headers.

Under Debuntu:

$ sudo apt-get install libev-dev libzmq-dev python-dev

And under Mac OS X, using Brew:

$ brew install libev
$ brew install zeromq
$ brew install python

Make sure you have a C compiler, and then pip:

$ curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py
$ sudo python get-pip.py

This will install pip globally on your system.

The next step is to install Virtualenv:

$ sudo pip install virtualenv

This will also install it globally on your system.

Basic installation

You can install Loads through Pip:

$ pip install loads

Or build Loads from the Git repo:

$ git clone https://github.com/mozilla-services/loads
$ cd loads
$ make build

This will compile Gevent 1.0rc2 using Cython, and all the dependencies
required by Loads - into a local virtualenv.

That’s it. You should then find the loads-runner command
in your bin directory.

Distributed

To install what’s required to start a distributed run,
it is encouraged to install Circus:

$ pip install circus

Or if you build Loads from the source, simply run:

$ make build_extras

Then you can read Distributed test.

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Loads 0.2 documentation

Writing load tests

Writing load tests can be done with Requests, WebTest or ws4py.
Loads provides a test case class that includes bridges to
the three libraries.

Warning

Loads uses Gevent to spawn concurrent users. Most of the time,
Gevent will play nicely with your tests and make sure that
they are run asynchronously - but in case Loads is not
sending the load it’s supposed to, it probably means
some of your code is blocking the Gevent loop.

Read Writing asynchronous tests to troubleshoot this issue.

Using Requests

Requests [http://www.python-requests.org] is a popular
library to query an HTTP service, and is widely used in the
Python community.

Let’s say you want to load test the Elastic Search root page
that’s running on your local host.

Write a test case like this one and save it in an example.py file:

from loads.case import TestCase

class TestWebSite(TestCase):

 def test_es(self):
 res = self.session.get('http://localhost:9200')
 self.assertEqual(res.status_code, 200)

The TestCase class provided by Loads has a session attribute you
can use to interact with an HTTP server. It’s a Session instance
from Requests.

Now run loads-runner against it:

$ bin/loads-runner example.TestWebSite.test_es
[==] 100%

Hits: 1
Started: 2013-06-14 12:15:42.860586
Duration: 0.03 seconds
Approximate Average RPS: 39
Average request time: 0.01s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 1
Errors: 0
Failures: 0

This will execute your test just once - so you can control that your test
works as expected.

Now, try to run it using 100 virtual users (-u), each of them running the test
10 times (–hits):

$ bin/loads-runner example.TestWebSite.test_es -u 100 --hits 10
[==] 100%
Hits: 1000
Started: 2013-06-14 12:15:06.375365
Duration: 2.02 seconds
Approximate Average RPS: 496
Average request time: 0.04s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 1000
Errors: 0
Failures: 0

Congrats, you’ve just sent a load of 1000 hits, using 100 virtual users.

Now let’s run a series of 10, 20 then 30 users, each one running 20 hits:

$ bin/loads-runner example.TestWebSite.test_something --hits 20 -u 10:20:30
...

That’s 1200 hits total.

You can use all Requests API to GET, PUT, DELETE, POST or do whatever
you need on the service.

Don’t forget to control all responses with assertions, so you can
catch any issue that may occur on your service on high load.

To do this, use the unit test assert methods [http://docs.python.org/2/library/unittest.html#assert-methods]
provided by Python. Most services will break with 500s errors when they can’t cope
with the load.

Using Loads with ws4py

Loads provides web sockets API through the ws4py library. You can
initialize a new socket connection using the create_ws method provided
in the test case class.

Run the echo_server.py file located in Loads’ examples directory, then
write a test that uses a web socket against it:

from loads.case import TestCase

class TestWebSite(TestCase):

 def test_something(self):

 results = []

 def callback(m):
 results.append(m.data)

 ws = self.create_ws('ws://localhost:9000/ws',
 protocols=['chat', 'http-only'],
 callback=callback)
 ws.send('something')
 ws.receive()
 ws.send('happened')
 ws.receive()

 while len(results) < 2:
 time.sleep(.1)

 self.assertEqual(results, ['something', 'happened'])

See ws4py documentation [https://ws4py.readthedocs.org]
for more info.

Using Loads with WebTest

If you are a WebTest fan, you can use it instead of Requests. If you don’t
know what WebTest is, you should have a look at it [http://webtest.pythonpaste.org] ;).

WebTest is really handy to exercise an HTTP service because it includes
tools to easily control the responses status code and content.

You just need to use app instead of session in the test case
class. app is a webtest.TestApp object, providing all the APIs to interact
with an HTTP service:

from loads.case import TestCase

class TestWebSite(TestCase):

 def test_something(self):
 self.assertTrue('tarek' in self.app.get('/'))

Of course, because the server root URL will change during the tests, you can
define it outside the tests, on the command line, with –server-url
when you run your load test:

$ bin/loads-runner example.TestWebSite.test_something --server-url http://blog.ziade.org

Changing the server URL

It may happen that you need to change the server url when you’re running the
tests. To do so, change the server_url attribute of the app object:

self.app.server_url = 'http://new-server'

Adding custom metrics

You can use the incr_counter method in your test case to increment a counter.
This is useful if you want to count the number of times a particular event
happens.

In this example, the tarek-was-there counter will be incremented everytime
the test is successful:

from loads.case import TestCase

class TestWebSite(TestCase):

 def test_something(self):
 self.assertTrue('tarek' in self.app.get('/'))
 self.incr_counter('tarek-was-there')

At the end of the test, you will be able to know how many times the counter
was incremented.

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Loads 0.2 documentation

Loads commands

Loads comes with 3 commands:

	load-runner: the test runner

	loads-broker: the master when running in distributed mode

	loads-agent: the slave when running in distributed mode

loads-runner

loads-runner only mandatory argument is the fully qualified name
(FQN) of the test method you want to call. Fully Qualified Name means
that you provide a string that contains the package, sub packages,
module, class and test name, all separated by dots - like an
import statement.

For example, if your test module is called test_server and
located in the tests package under the project package,
the FQN for the test_es method in the TestSite class will be:
project.tests.test_server.TestSite.test_es.

Running that test is done with:

$ loads-runner project.tests.test_server.TestSite.test_es

Loads imports the test_server module, instanciantes the
TestSite class, then call the test_es method.

Every other option in loads-runner is optional, as
the command provides defaults to run the test locally a single
time with a single user.

This is useful for trying out a test, but to do a real
load test, you will need more options.

Common options

Loads has 3 options you can use to define how much of
a load you are sending.

	-u / –users: the number of concurrent users spawned for
the test. You can provide several values separated by ”:”.
Example: “10:20:30”. In that case, Loads will spawn 10, then
20 then 30 users. That’s what we call a cycle
Defaults to 1.

	–hits: the number of times the test is executed per user.
Like for –users, you can provide a cycle. The number
of tests will be the cartesian product of hits by users.
Defaults to 1.

	-d / –duration: number of seconds the test is run. This
option is mutually exclusive with –hits. You will have to decide
if you want to run test a certain number of times or for a
certain amount of time. When using duration, Loads will
loop on the test for each user indefinitely. Defaults
to None.

Distributed mode options

When running in distributed mode, the most important options
are –broker and –agents, that will let you point
a cluster and define the number of nodes to use, but they
are other options that may be useful to run your test.

	-b / –broker: Point to the broker’s ZMQ front socket.
defaults to ipc:///tmp/loads-front.ipc. We call it front
socket because the broker has many other socket, and this
one is used by the broker to receive all queries that are
then dispatched to backends.

	-a / –agents: Defines the number of nodes you want to
use to run a load test. This option triggers the distributed
mode: if you use it, then Loads makes the assumption that
you are in distributed mode. When you use agents, the
users/hits/duration options will be sent to each agent, so
the number of tests that will be executed is the cartesian
product = [agents x users x (hits or duration)].
Defaults to None.

	–test-dir: when provided, the broker will ask every agent
to create the directory on the slave box, and chdir to it.
For example, you can pass a value like “/tmp/mytest”.
Loads will create all intermediate directories if they don’t
exist.

	–python-dep: points a Python project name, that will be
installed on each slave prior to running the test, using pip.
You can provide the usual version
notation if needed. You can also provide several –python-dep
arguments if you need them - or None.

	–include-file: give that option a filename or a directory
and Loads will recursively upload the files on each slave.
That option needs to be used with –test-dir. You can
also use glob-style patterns to include several files.
Something like: “*.py” will include all Python files
in the current directory. Like –python-deps* you
can provide one or several options, or None.

	–detach: when this flag is used, the runner will
call the broker and quit immediatly. The test will be
running in detached mode. This can also be done
by hitting Ctrl-C after the run has started.

	–attach: use this flag to reattach a console to
an existing run. If several runs are active, you will
have to choose which one to get attached to.

	–ping-broker: use this flag to display the broker
status: the number of workers, the active runs
and the broker options.

	–purge-broker: use this flag to stop all
active runs.

	–health-check: use this flag to run an
empty test on every agent. This option is useful
to verify that every agent is up and responsive.

	–observer: you can point a fully qualified name
that will be called from the broker when the test
is over. Loads provides built-in observers: irc
and email. They will send a message on a given
channel or to a given recipient when the test
is done.

	–no-patching: use this flag to prevent
Gevent monkey patching. see Writing asynchronous tests for
more information on this.

Configuration file

Instead of typing a very long command line, you can create a configuration
file and have Loads use it.

Here’s an example:

[loads]
fqn = example.TestWebSite.test_something
agents = 4

include_file = *.py
 pushtest

test_dir = /tmp/tests
users = 5
duration = 30
observer = irc
detach = True

In this example, we’re pushing a load test accross 4 agents.

Using this config file is done with the –config option:

$ loads-runner --config config.ini

loads-broker

XXX

loads-agent

XXX

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Loads 0.2 documentation

Distributed test

Warning

Loads comes with no security whatsoever. If you run
a broker, make sure that you secure access to the box
because any code can be executed remotely through the
loads-runner command.

The best way to avoid any issue is to protect the
server access through firewall rules.

If you want to send a lot of load, you need to run a distributed test.
A distributed test uses multiple agents to do the requests.
The agents can be spread across several boxes called nodes.

A typical setup is to run a broker on a box, with a few agents, and
have dedicated boxes to run many agents. This setup is called
a Loads cluster.

The typical limiting factor will be the number of sockets each
box will be able to open on each node that will call your service.
This number can be tweaked by changing the ulimit value to
a higher number - like 8096. You can read this
page [http://urbanairship.com/blog/2010/09/29/linux-kernel-tuning-for-c500k]
for more tips on tweaking your servers.

Setting up a Loads cluster

To run a broker and some agents, we can use
Circus [http://circus.readthedocs.org] - a process supervisor.

To install Circus you can use Pip:

$ bin/pip install circus

If you have any trouble installing Circus, check out
its documentation.

Once Circus is installed, you can run it against
the provided loads.ini configuration file that’s
located in the Loads source repository in the con/
directory:

$ bin/circusd --daemon conf/loads.ini

This command will run 1 broker and 5 agents

Here is the content of the loads.ini file:

[circus]
check_delay = 5
httpd = 0
statsd = 1
debug = 0

[watcher:broker]
cmd = bin/loads-broker
warmup_delay = 0
numprocesses = 1

[watcher:agents]
cmd = bin/loads-agent
warmup_delay = 0
numprocesses = 5
copy_env = 1

Let’s control that the cluster is functional by pinging the broker
for its status:

$ bin/loads-runner --ping-broker
Broker running on pid 11154
5 agents registered
endpoints:
- publisher: ipc:///tmp/loads-publisher.ipc
- frontend: ipc:///tmp/loads-front.ipc
- register: ipc:///tmp/loads-reg.ipc
- receiver: ipc:///tmp/loads-broker-receiver.ipc
- heartbeat: ipc:///tmp/hb.ipc
- backend: ipc:///tmp/loads-back.ipc
Nothing is running right now

Let’s use them now, with the agents option, with the example
shown in Writing load tests:

$ bin/load-runner example.TestWebSite.test_something -u 10:20:30 -c 20 --agents 5
[==] 100%

Congrats, you have just sent 6000 hits from 5 different agents. Easy, no?

To stop your cluster:

$ bin/circusctl quit

Adding more agents

XXX

Detach mode

When you are running a long test in distributed mode, you might want to detach
the console and come back later to check the status of the load test.

To do this, you can simply hit Ctrl+C. Loads will ask you if
you want to detach the console and continue the test, or simply stop it:

$ bin/load-runner example.TestWebSite.test_something -u 10:20:30 -c 20 --agents 5
^C
...
Duration: 2.04 seconds
Hits: 964
Started: 2013-07-22 07:12:30.139814
Approximate Average RPS: 473
Average request time: 0.00s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 964
Errors: 0
Failures: 0

Do you want to (s)top the test or (d)etach ? d

Then you can use –attach to reattach the console:

$ bin/loads-runner --attach
[] 4%
Duration: 43.68 seconds
Hits: 19233
Started: 2013-07-22 07:12:30.144859
Approximate Average RPS: 0
Average request time: 0.00s
Opened web sockets: 0
Bytes received via web sockets : 0

Success: 0
Errors: 0
Failures: 0

Do you want to (s)top the test or (d)etach ? s

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Loads 0.2 documentation

Writing asynchronous tests

When loads-runner is executing your tests, it calls
Gevent monkey patching [http://www.gevent.org/gevent.monkey.html]
to make the Python standard library cooperative.

That feature works well when you are making classical
socket calls on a service, but some libraries are known
to be incompatible with this behavior.

If you encounter some issues, you can deactivate
the monkey patching with the –no-patching option
and work things out manually.

Asynchronous web sockets

XXX

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Loads 0.2 documentation

Design

Hopefully, it’s not really complicated to dig into the code and have a good
overview of how Loads is designed, but sometimes a good document explaining
how things are done is a good starting point, so let’s try!

You can run Loads either in distributed mode or in non-distributed mode.
The vast majority of the time, you want to run several of agents to
hammer the service you want to load test. That’s what we call
the distributed mode.

Alternatively, you may want to run things from a single process, just
to smoke test your service - or simply because you don’t need
to send a huge load. That’s the non-distributed mode.

What happens during a non-distributed run

	You invoke the loads.runner.Runner class.

	A loads.case.TestResult object is created. This object is a data
collector, it is passed to the test suite (TestCase), the loads Session
object and the websocket manager. Its very purpose is to collect the data
from these sources. You can read more in the section named TestResult below.

	We create any number of outputs (standard output, html output, etc.) in the
runner and register them to the test_result object.

	The loads.case.TestCase derivated-class is built and we pass it the
test_result object.

	A number of threads / gevent greenlets are spawned and the tests are run one
or multiple times.

	During the tests, both the requests’ Session, the test case itself and the
websocket objects report their progress in real time to test_result. When
there is a need to disambiguate the calls, a loads_status object is passed
along.

It contains data about the hits, the total number of users, the current
user and the current hit.

	Each time a call is made to the test_result object to add data, it notifies
its list of observers to be sure they are up to date. This is helpful to
create reports in real time, as we get data, and to provide a stream of info
to the end users.

What happens during a distributed run

When you run in distributed mode, you have a distributed runner (the
broker) which defer the execution to one or several
agents.

These agents are simple runners that will redirect their results
to the broker using a ZeroMQ stream.

The relay can be found in the loads/relay.py module. It’s a
drop-in replacement for the TestResult class.

The broker gets back the results and store them in a database,
then publishes them in turn, so the caller can get them.

A schema might help you to get things right:

[image: _images/loads.png]
All the communication is handled through ZeroMQ sockets, as you can
see in the diagram.

In more details:

	The distributed runner sends a message to the broker,
asking it to run the tests on N agents.

	The broker selects available agents and send them the job.
Every agent starts a loads-runner instance in slave mode

	The broker receives the results back from every agent.

	The broker publishes the results so the distributed runner
can get them.

The TestResult object

The TestResult object follows the APIs of unittest. That’s why you can
use all assertions methods such as addSuccess, addFailure, etc.

Hopefully, people that are used to write Python tests should be familiar
with these API and they can use Loads’ TestCase class in lieu of
the usual unittest.TestCase class.

Loads’ TestCase class is located in loads/case.py, and implements
the same APIs than unittest’s one.

The extra benefit of keeping our class compatible with unittest
is that you can also run Loads tests with third party test runners
like Nose or unittest2. They will be recognized as classical functional
tests.

The Runners

As mentioned earlier, Loads provides more than one Runner implementation.
Each of these classes share an implicit interface, allowing us to have more
than one implementation of a runner.

For instance, you can see that we have a Runner and a DistributedRunner.
The former is a “local” runner: it is able to run the tests locally and output
the results directly or proxy them to a ZMQ backend.

The latter, the DistributedRunner, runs the tests on a Loads cluster, using
a broker and one or more agents.

A runner has a constructor, which takes an arg argument, a dict, with all
the startup options it may need. It is then started with the execute method.

If you want to add a specific behavior, you may need to subclass LocalRunner
and change its _execute method (notice how it’s prefixed with an underscore).
This method is where all the actual execution happens.

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Loads 0.2 documentation

Plugin-in external runners

By default, Loads is built in a way which makes it possible to have tests
runners written in any languages. To do that, it uses ZeroMQ [http://zeromq.org] to do communicate.

This document describes the protocol you need to implement if you want to
create your own runner.

Existing implementations

Currently, there is only a Python implementation and a JavaScript
implementation (using the Mocha test framework for the latter). The JS runner
is provided in a separate project named loads.js [https://github.com/mozilla-services/loads.js].

If you have implemented your own runner, feel free to submit us a
patch or a pull request.

The protocol

Each message sent to Loads needs to respect the following rules:

	All the data is JSON encoded.

	Dates are expressed in ISO 8601 format [https://en.wikipedia.org/wiki/ISO_8601], (YYYY-MM-DDTHH:MM:SS)

	You should send along the agent id with every message. Each agent id should
be different from each other.

	You should also send the id of the run.

	Additionally, each message contains a data_type, with the type of the
data.

A message generally looks like this:

{
 data_type: 'something',
 agent_id: '1',
 run_id: '1234',
 other_key_1: 'foo'
 other_key_2: 'bar'
}

loads_status

Some messages take a loads_status argument. loads_status is a list of
values concerning the current status of the load.

With loads, you can run cycle of runs. For instance, if you pass 10:50:100 for
the users, it will start with 10 users in parallel, and then 50 and finally
100.

Loads status contains information about the current number of users we have to
run for the cycle we are in (50, for instance), and the user we are currently
taking care of (could be 12). Same applies for the hits.

It contains, in this order:

	hits: the number of hits that will be running on this cycle.

	user: the number of users that will be running on this cycle.

	current_hit: the current hit we’re running.

	current_user: the current user doing the requests.

errors / exceptions

When errors / exceptions are caught, they are serialised and sent trough the
wire, as well. When you see an exc *, it is a list containing this:

	A string representation of the exception

	A string representation of the exception class

	The traceback / Stack trace.

Data types

Tests

When using Loads, you usually run a test suite. Tests start, stop, succeed and
fail. Here are the APIs you can use:

	addFailure(test_name, exc *, loads_status)

	addError(test_name, exc *, loads_status)

	addSuccess(test_name, loads_status)

	startTest(test_name, loads_status)

	stopTest(test_name, loads_status)

You should not send the startTestRun and stopTestRun messages.

Requests

To track requests, you only have one method, named “add_hit” with the following parameters:

	url, the URL of the request, for instance http://notmyidea.org

	method, the HTTP method (GET, POST, PUT, etc.)

	status, the response of the call (200)

	started, the time when it started

	elapsed, the number of seconds (decimal) the request took to run

	loads_status, as already described

Sockets

If you’re also able to track what’s going on with the socket connections, then
you can use the following messages:

	socket_open()

	socket_close()

	socket_message(size) # the size, in bytes, that were transmitted via the websocket.

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Loads 0.2 documentation

Glossary

	agent
agents

	A process, running on a distant machine, waiting to run the tests (send
the requests) to create some actual load on the system under test.

	broker

	The process which routes the jobs to the agents. It contains a broker
controller and a broker database.

	distributed run
distributed test

	When a test is run in distributed mode, meaning that all the commands goes
trought the broker and one or more agents.

	observers

	Some python code in charge of notifying people via various channels (irc,
email, etc.). Observers are running on the broker.

	outputs

	Some python code in charge of generating reports (in real time or not)
about a Loads run. Outputs are running on the client side.

	runner

	The code that will actually run the test suite for you.

	system under test

	The website or service you want to test with Loads.

	virtual users

	When running a test, you can chose the number of users you want to have in
parallel. This is called the number of virtual users.

	workers

	Each agent can spawn a number of workers, which does the actual queries.
The agent isn’t sending itself the queries, it creates a worker which does
it instead.

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Loads 0.2 documentation

Contributing

Loads is an open source project and we welcome contributors.

We usually hang on IRC on Freenode in the #mozilla-circus
channel.

	Source code: https://github.com/mozilla-services/loads

	Documentation: http://loads.readthedocs.org

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	
 previous |

 	Loads 0.2 documentation

Outputs

By default, Loads reports the status of the load in real time on the standard
output of the client machine. Depending what you are trying to achieve, that
may or may not be what you want.

Loads comes with a pluggable “output” mechanism: it’s possible to
define your own output format if you need so.

You can change this behaviour with the –output option of the loads-runner
command line.

At the moment, we’re supporting the following outputs:

	file if you want to have all the calls reported to a file. This is useful
for later analysis but doesn’t do much.

	funkload generates a funkload compatible report.
These reports can then be used with the the fl-build-report <filename>
command-line tool to generate reports about the load.

	null in case you want to silent the outputs.

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 Navigation

 	
 index

 	Loads 0.2 documentation

Index

 A
 | B
 | D
 | O
 | R
 | S
 | V
 | W

A

 	

 	agent

 	

 	agents

B

 	

 	broker

D

 	

 	distributed run

 	

 	distributed test

O

 	

 	observers

 	

 	outputs

R

 	

 	runner

S

 	

 	system under test

V

 	

 	virtual users

W

 	

 	workers

 Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2

 	0.1

 _static/minus.png

_static/comment-bright.png

_images/loads.png
Distributed
Runner

subscriber

publisher

router WU punl

class MyTest(TestCase):
def test_one(self):
self.get('http://site’)

Agents

search.html

 Navigation

 		
 index

 		Loads 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Mozilla Services.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		0.2

 		0.1

_images/logo.jpg

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

